

NASA Detector Update

Jason Rhodes (Jet Propulsion Laboratory,
California Institute of Technology)
to the ESA Euclid Science Team
3/24/2017
MPIA Heidelberg

Euclid NIR detector characterization at JPL Precision Projector Laboratory

Progress Report 2017-03-13
Chaz Shapiro (JPL)
Eric Huff (JPL), Roger Smith (COO)

Objective: Study H2RG sub-pixel response

- Engineering grade H2RG (#18546)
 was lent to JPL to investigate
 nature of the cross-hatch pattern
 seen in flat-field images.
- Pattern is visible even under an optical microscope.
- Concern: this may correspond to sub-pixel variations in quantum efficiency (QE) or charge redistribution, making photometric calibration difficult.
- By emulating Euclid-like point sources, we can measure the nature of this pattern and what effect it has on photometry

The Precision Projector Laboratory

- Since its inception in 2008, the **chief design goal** of PPL has been the emulation of weak gravitational lensing survey data for WFIRST (formerly JDEM, SNAP).
- PPL emulates the WFIRST f number but **not** the optics the simplest possible PSF is used to reduce optical effects and uncover detector systematics
- PPL is versatile and can rapidly generate a range of signals: stars, galaxies, spectra, flat fields / backgrounds, focal ratios, filters, image motion
- PPL has readily enabled detector tests for other missions
 - Photometric stability for exoplanet transits with JWST
 - Wavefront correction camera test for Keck
 - Emulation of fiber position measurements for Subaru/PFS
 - Intra-pixel response measurement for Euclid
- PPL group includes experts on detector operation, optical engineering, weak gravitational lensing analysis, and cosmology.

Precision Projector Laboratory testbed

Detector, filter in dewar Turntable Integrating spheres connect to LEDs or lamp

Projector System Features:

- Diffraction-limited optics with simple point spread function (PSF).
- High image stability through passive damping.
- Custom image masks, adjustable f/#, stages & illumination provide a range of signals for investigating various detector effects and mission conditions.
- Servo controls on mask and tip-tilt mirror allow fine image positioning for dithering or scanning.
- IMage COMbination algorithm implements WFIRST image reconstruction strategy with dithered, undersampled images.
- Dedicated 144 core cluster allows near real-time analysis of 1000's of images.
- Dewar customized for HxRG + SIDECAR

Image of 3µm spot grid (emulated stars)

Interpretation

- No significant effect on photometric stability in the good detector region.
 Scatter in the cross-hatched region increases by 1.5% relative to mean.
 Flat fielding reduces this to 1%.
- This is consistent with sub-pixel QE variations along the scan (column)
 direction. If the cross-hatch pattern were due to charge redistribution, we
 expect no effect in the uncorrected images
- We have not eliminated all systematics but the correlation of the increased scatter with the cross-hatch pattern is compelling.
- Averaging over a large detector area may be hiding small-scale effects in the "good" region.

Ways to learn more

- Repeat experiment with aperture set to different f#.
 Effect should decrease with larger f/#.
- Repeat with increased signal to noise, average over smaller detector regions.
- Try different scanning patterns
- Map out photometry variations (may need to be more careful about persistence)
- Oversample the spots (point spread functions) through dithering and reconstruct sub-pixel QE from its distortions to the PSF.

Extra Slides

Detector Delivery

- NASA preship review March 21, 2017 (successful)
- Delivery of first 3 SCS flight units (pending positive outcome of review): TODAY!
- Final SCS delivery estimated November, 2017

Euclid

NASA Euclid Science Input to Hardware Delivery

Michael Seiffert
NASA Euclid Project Scientist

SCA Selection

We have used a figure-of-merit (FoM) approach for SCA selection.

- Assigns a scalar number to each Euclid NIR flight candidate detector
 - 0 represents a dead detector and 1 represents an ideal, perfect detector
 - The FoM represents the scientific performance of the detector in the Euclid Survey
- The FoM is calculated on a per detector basis. No inclusion of how detectors complement one another in the focal plane.
- NASA and EC FoM codes cross-checked for consistency.
- For the first 4 SCAs, we have calculated a number of variants on the FoM.
 The first 4 SCAs are in the top 12 in ranking in any permutation of these FoMs.
- Results discussed with ESA and the EC. The underlying detector data has been shared with ESA and the EC.
- Choosing the first 8 or so SCAs is straightforward there will be more discussion on the last 4!

Recent Developments

Results of SCS flight testing consistent with expectations from SCA testing, with one exception.

- The key drivers, Noise and QE, are consistent
- Image persistence is a "goal" not a requirement. SCS's performance exceeds goal.

Summary

- Good and close working relationship with ESA and the EC.
- First 4 SCAs were selected for flight integration.
- SCS scientific performance exceeds requirements.